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We prove a new sharpening of the inequality
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which is due to T. Carleman. © 1998 Academic Press

In 1923, T. Carleman [4] presented the following inequality: Let «,
(k=1,2,..) be positive real numbers such that >, a, is convergent.
Then
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Z (1)
where G,=[[*_,a}* denotes the geometric mean of a, .., a;. The
constant factor 1/e is best possible.

Carleman’s inequality has found much attention among several mathe-
maticians, and in many papers different proofs, extensions, and variants
of inequality (1) have been provided. We refer to [1, 2, 5-9] and the
references given therein.

It is the aim of this note to establish a sharpening of Carleman’s
inequality which we could not locate in the literature. A basic tool in our
proof will be the following refinement of the arithmetic mean—geometric
mean inequality which is due to R. Rado.
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Lemma. If x;, (k=1, .., n) are positive real numbers, then

— [ max ﬁ— min /x;1><~ i X — ]_[ xpm, (2)
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1<i<n 1<i<n
A detailed proof of (2) as well as many related results can be found
in [3].
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THEOREM. Let a, (k=1,2,..) be positive real numbers such that
> ay is convergent. Then we have
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where

M, = max ./ia; and m,= min ./ia;.

1<i<k 1<i<k

Proof. Let k=1 be an integer. From the lemma (with x,=ka,) we
obtain
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We multiply both sides of (4) by 1/(k+1) and sum from k=1 to k=n.
This yields
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If we let n tend to oo, then we have
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Finally, we use the inequality (1/e) < ¥k!/(k+1) (k=1,2,..), to obtain
inequality (3). |1
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