## NOTE

# A Refinement of Carleman's Inequality 

Horst Alzer<br>Morsbacher Str. 10, 51545 Waldbröl, Germany<br>Communicated by Peter B. Borwein<br>Received January 23, 1996; accepted March 17, 1998

We prove a new sharpening of the inequality

$$
\frac{1}{e} \sum_{k=1}^{\infty} \prod_{i=1}^{k} a_{i}^{1 / k}<\sum_{k=1}^{\infty} a_{k} \quad\left(a_{k}>0, k=1,2, \ldots\right),
$$

which is due to T. Carleman. © 1998 Academic Press

In 1923, T. Carleman [4] presented the following inequality: Let $a_{k}$ ( $k=1,2, \ldots$ ) be positive real numbers such that $\sum_{k=1}^{\infty} a_{k}$ is convergent. Then

$$
\begin{equation*}
\frac{1}{e} \sum_{k=1}^{\infty} G_{k}<\sum_{k=1}^{\infty} a_{k}, \tag{1}
\end{equation*}
$$

where $G_{k}=\prod_{i=1}^{k} a_{i}^{1 / k}$ denotes the geometric mean of $a_{1}, \ldots, a_{k}$. The constant factor $1 / e$ is best possible.

Carleman's inequality has found much attention among several mathematicians, and in many papers different proofs, extensions, and variants of inequality (1) have been provided. We refer to [1, 2, 5-9] and the references given therein.

It is the aim of this note to establish a sharpening of Carleman's inequality which we could not locate in the literature. A basic tool in our proof will be the following refinement of the arithmetic mean-geometric mean inequality which is due to R . Rado.

Lemma. If $x_{k}(k=1, \ldots, n)$ are positive real numbers, then

$$
\begin{equation*}
\frac{1}{n}\left[\max _{1 \leqslant i \leqslant n} \sqrt{x_{i}}-\min _{1 \leqslant i \leqslant n} \sqrt{x_{i}}\right]^{2} \leqslant \frac{1}{n} \sum_{k=1}^{n} x_{k}-\prod_{k=1}^{n} x_{k}^{1 / n} \tag{2}
\end{equation*}
$$

A detailed proof of (2) as well as many related results can be found in [3].

Theorem. Let $a_{k}(k=1,2, \ldots)$ be positive real numbers such that $\sum_{k=1}^{\infty} a_{k}$ is convergent. Then we have

$$
\begin{equation*}
\frac{1}{e} \sum_{k=1}^{\infty} G_{k}+\sum_{k=1}^{\infty} \frac{\left(M_{k}-m_{k}\right)^{2}}{k(k+1)}<\sum_{k=1}^{\infty} a_{k}, \tag{3}
\end{equation*}
$$

where

$$
M_{k}=\max _{1 \leqslant i \leqslant k} \sqrt{i a_{i}} \quad \text { and } \quad m_{k}=\min _{1 \leqslant i \leqslant k} \sqrt{i a_{i}} \text {. }
$$

Proof. Let $k \geqslant 1$ be an integer. From the lemma (with $x_{k}=k a_{k}$ ) we obtain

$$
\begin{equation*}
\sqrt[k]{k!} G_{k}=\prod_{i=1}^{k}\left(i a_{i}\right)^{1 / k} \leqslant \frac{1}{k} \sum_{i=1}^{k} i a_{i}-\frac{\left(M_{k}-m_{k}\right)^{2}}{k} . \tag{4}
\end{equation*}
$$

We multiply both sides of (4) by $1 /(k+1)$ and sum from $k=1$ to $k=n$. This yields

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{\sqrt[k]{k!}}{k+1} G_{k}+\sum_{k=1}^{n} \frac{\left(M_{k}-m_{k}\right)^{2}}{k(k+1)} & \leqslant \sum_{k=1}^{n}\left(\frac{1}{k(k+1)} \sum_{i=1}^{k} i a_{i}\right) \\
& =\sum_{k=1}^{n} a_{k}-\frac{1}{n+1} \sum_{k=1}^{n} k a_{k} \\
& <\sum_{k=1}^{n} a_{k}
\end{aligned}
$$

If we let $n$ tend to $\infty$, then we have

$$
\sum_{k=1}^{\infty} \frac{\sqrt[k]{k!}}{k+1} G_{k}+\sum_{k=1}^{\infty} \frac{\left(M_{k}-m_{k}\right)^{2}}{k(k+1)} \leqslant \sum_{k=1}^{\infty} a_{k} .
$$

Finally, we use the inequality $(1 / e)<\sqrt[k]{k!} /(k+1)(k=1,2, \ldots)$, to obtain inequality (3).

## REFERENCES

1. H. Alzer, On Carleman's inequality, Portugal. Math. 50 (1993), 331-334.
2. G. Bennett, Some elementary inequalities, III, Quart. J. Math. Oxford (2) 42 (1991), 149-174.
3. P. S. Bullen, D. S. Mitrinović, and P. M. Vasić, "Means and Their Inequalities," Reidel, Dordrecht, 1988.
4. T. Carleman, Sur les fonctions quasi-analytiques, in "Conférences faites au cinquième congrès des mathematiciens Scandinaves, Helsingfors, 1923," pp. 181-196.
5. L. Carleson, A proof of an inequality of Carleman, Proc. Amer. Math. Soc. 5 (1954), 932-933.
6. G. H. Hardy, Notes on some points in the integral calculus, LXIV, Messenger Math. $\mathbf{5 7}$ (1928), 12-16.
7. E. R. Love, Inequalities related to those of Hardy and of Cochran and Lee, Math. Proc. Cambridge Philos. Soc. 99 (1986), 395-408.
8. E. R. Love, Inequalities related to Carleman's inequality, in "Inequalities" (W. N. Everitt, Ed.), Dekker, New York, 1991.
9. R. Redheffer, Recurrent inequalities, Proc. London Math. Soc. (3) 17 (1967), 683-699.
