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NOTE

A Refinement of Carleman's Inequality
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We prove a new sharpening of the inequality
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which is due to T. Carleman. � 1998 Academic Press

In 1923, T. Carleman [4] presented the following inequality: Let ak

(k=1, 2, ...) be positive real numbers such that ��
k=1 ak is convergent.

Then
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where Gk=>k
i=1 a1�k

i denotes the geometric mean of a1 , ..., ak . The
constant factor 1�e is best possible.

Carleman's inequality has found much attention among several mathe-
maticians, and in many papers different proofs, extensions, and variants
of inequality (1) have been provided. We refer to [1, 2, 5�9] and the
references given therein.

It is the aim of this note to establish a sharpening of Carleman's
inequality which we could not locate in the literature. A basic tool in our
proof will be the following refinement of the arithmetic mean�geometric
mean inequality which is due to R. Rado.

Lemma. If xk (k=1, ..., n) are positive real numbers, then
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A detailed proof of (2) as well as many related results can be found
in [3].
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Theorem. Let ak (k=1, 2, ...) be positive real numbers such that
��

k=1 ak is convergent. Then we have
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where

Mk= max
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- iai and mk= min
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- iai .

Proof. Let k�1 be an integer. From the lemma (with xk=kak) we
obtain
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We multiply both sides of (4) by 1�(k+1) and sum from k=1 to k=n.
This yields
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If we let n tend to �, then we have
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Finally, we use the inequality (1�e)< k
- k !�(k+1) (k=1, 2, ...), to obtain

inequality (3). K
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